IPv6-only Network Report

Or: how to turn "IPv6-mostly" into "IPv6-only"

Brian Candler
SSID "apricot-v6only"

• How we built it
• What's different from previous conference v6only networks
• Issues found
• Usage stats
Brief detour: "IPv6-mostly"

- Relatively new mechanism for the graceful sunset of IPv4 in dual-stack networks
 - RFC 8925: DHCPv4 "IPv6-Only Preferred" (option 108)
 - RFC 8781: PREF64 in Router Advertisements
- If both features are present, the client declines an IPv4 address and enables an embedded CLAT (NAT46)
- Magic happens...
% ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: icmp_seq=0 ttl=57 time=34.383 ms
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=33.917 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=38.316 ms

09:00:48.499160 IP6 2001:df9:0:3:c88:a341:b8c:8ade > fd64::808:808:
ICMP6, echo request, id 12084, seq 0, length 64
09:00:48.533271 IP6 fd64::808:808 > 2001:df9:0:3:c88:a341:b8c:8ade:
ICMP6, echo reply, id 12084, seq 0, length 64
IPvFoo

NEWS
Home | Israel-Gaza war | War...
Client view (macOS)

% ifconfig en0
en0: flags=88e3<UP,BROADCAST,SMART,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
 ether 60:3e:5f:81:98:c4
 inet6 fe80::14a5:e833:7d65:c178%en0 prefixlen 64 secured scopeid 0xe
 inet6 2001:df9:0:3:1424:5189:5756:bc4a prefixlen 64 autoconf secured
 inet6 2001:df9:0:3:7407:fd14:7b93:124b prefixlen 64 autoconf temporary
 inet 192.0.0.2
 netmask 0xffffffff broadcast 192.0.0.2
 inet6 2001:df9:0:3:c88:a341:b8c:8ade prefixlen 64 clat46
 nat64 prefix fd64:: prefixlen 96
 nd6 options=201<PERFORMNUD,DAD>

This IPv4 address is entirely internal and does not leave the machine – or so I thought!
Building a better IPv6-only network

• by enabling the IPv6-mostly functionality
1. DHCPv4 server for IPv6-only

• Needed a DHCP server that responds to clients that request option 108, but *does not respond* to others

• ISC and KEA will always offer an IPv4 address from a pool

• Deployed a custom DHCP server in Go (coredhcp) and patched it to implement the right behavior

• Patches have now been merged upstream

https://github.com/coredhcp/coredhcp/pull/170
https://github.com/insomniacslk/dhcp/pull/524
server4:
 listen:
 - "%enp6s0"
 - "10067"

plugins:
 - server_id: 10.12.65.1
 - ipv6only: 24h
 - autoconfigure:

Optionally act as stateless DHCPv6 server too

server6:
 listen:
 - "[ff02::1:2%enp6s0]"
 - "[ff05::1:3%enp6s0]"
 - "10547"

plugins:
 - server_id: LL 00:16:3e:a2:64:a4
 - dns: 2405:3340:e000::77:77 2001:df9:0:1::2
 - searchdomains: apricot.bknix.net
2. PREF64 in RAs

- Many router vendors only have it in very new firmware
 - e.g. Mikrotik added in RouterOS 7.8 (but no NAT64)
- Linux `radvd` does it, but not in any released version
 - Needed to compile from source
- You can't generate RAs on behalf of another router, so the Linux VM had to become the default gateway
interface enp6s0
{
 AdvSendAdvert on;
 MinRtrAdvInterval 240;
 MaxRtrAdvInterval 720;
 AdvManagedFlag off;
 # Optional: use stateless DHCPv6 as well
 AdvOtherConfigFlag on;
 AdvHomeAgentFlag off;
 prefix 2001:df9:0:3::/64
 {
 AdvOnLink on;
 AdvAutonomous on;
 AdvRouterAddr off;
 }
};

nat64prefix fd64::/96 {
 AdvValidLifetime 1800;
};

RDNSS 2405:3340:e000::77:77 2001:df9:0:1::2
{
 AdvRDNSSLLifetime 1800;
};

DNSSSL apricot.bknix.net
{
 AdvDNSSLLifetime 1800;
};
3. NAT64 (PLAT)

- Since the VM has to forward all the IPv6 traffic anyway, I decided to let it do the NAT64 as well
- Linux kernel module: "apt install jool-dkms jool-tools"
 - or so I thought!
- By default uses the single outside IPv4

```bash
modprobe jool
jool instance add --netfilter --pool6 fd64::/96
```
It works! Mostly…

• Problem 1: multicast packets on wire with 192.0.0.2 source

16:25:42.710644 IP 192.0.0.2.56483 > 239.255.255.250.1900: UDP, length 176
16:25:43.715587 IP 192.0.0.2.56483 > 239.255.255.250.1900: UDP, length 176

17:06:57.893135 IP 192.0.0.2 > 239.255.255.250: igmp v2 report 239.255.255.250
17:07:07.952649 IP 192.0.0.2 > 224.0.0.2: igmp leave 239.255.255.250

22:34:43.010782 IP 192.0.0.2.5353 > 224.0.0.251.5353: 0 [7a] [24q] [1au] PTR
(QM)? lb._dns-sd._udp.local. PTR (QM)? _airport._tcp.local. PTR (QM)? ...
Cisco WLC security feature

Feb 25 10:16:56.836: %CLIENT_ORCH_LOG-5-ADD_TO_EXCLUSIONLIST_REASON: Chassis 1 R0/0: wncd: Client MAC: 3c22.fb13.clcc with IP: 192.0.0.2 was added to exclusion list, legit Client MAC: 603e.5f81.98c4, IP: 192.0.0.2, reason: IP address theft

Solution:

![Configuration ➔ Security ➔ Wireless Protection Policies](image)

- Rogue Policies
- Rogue AP Rules
- Client Exclusion Policies
- Select all events
- Excessive 802.11 Association Failures
- Excessive 802.1X Authentication Failures
- Excessive 802.1X Authentication Timeout
- IP Theft or IP Reuse
- Excessive Web Authentication Failures
More problems

• Randomly or regularly kicked off wireless
 – Increased Dynamic Channel Assignment interval from 10 mins to 24 hours. Better?? *

• Occasional fail to connect over UDP (SoftEther, Wireguard)
 – Resolved itself. Feels like NAT exhaustion? See next page

• An iOS banking app did not generate confirmation page

• But we didn't provide a channel for users to report issues

* Disable "IPv4 DHCP Required" option, at [Configuration > Tags & Profiles > Policy] > [SSID] - Advanced -> DHCP"
NDP expiry!

- NDP neighbors timed out for client's CLAT IPv6 address
- Version of jool in Ubuntu 22.04 repo is 4.1.7
- Fix? Install the latest (4.1.11) deb packages from github

v4.1.10

@ydhhrk released this Jun 12, 2023 · 22 commits to main since this release · v4.1.10

Improvements since 4.1.9:

- #382, #400: Clean up skb->tstamp during translation to prevent dropped packets.
Minor reproducible niggles

• traceroute shows only "*" for every hop
• macOS ssh client with -4 & hostname

```bash
% ssh -4 nsrc.org
ssh: connect to host nsr.org port 22: Undefined error: 0
```

And yet:

```bash
% ssh 128.223.157.25
... works

% /opt/homebrew/bin/ssh -4 nsrc.org
... works
```
DHCP log data (to Friday 1.30pm)

• 142 unique MAC addresses seen in total (64 today)
• 115 (81%) of these requested option 108 (60 today)
• Of the remaining 27, none of them offered option 116 (disable stateless AutoConfigure: RFC 2563)
• These 27 requested DHCPv4 repeatedly
 – Median 53 times
 – One device tried 49,482 times over 2 days
How compatible is this?

- macOS, iOS, Android: all good
- Windows: no (only on mobile broadband cards)
- Linux: no (install & configure `clatd` by hand??)
- In an IPv6-*mostly* network, this is not an issue
- Wider compatibility if you use DNS64? But this fakes AAAA addresses even for option-108 supporting clients
More information

- https://labs.ripe.net/author/ondrej_caletka_1/deploying-ipv6-mostly-access-networks/ -- Ondřej Caletka
- Monitor your own network to see how many devices include option 108 in their Parameter Request List

```
DHCP-Message (53), length 1: Discover
Parameter-Request (55), length 12:
  Subnet-Mask (1), Classless-Static-Route (121), Default-Gateway (3),
  Domain-Name (15), Unknown (108), URL (114), Unknown (119)
  Unknown (252), LDAP (95), Netbios-Name-Server (44), Netbios-Node (46)
```
"most of us are ipv6 haters, but we're also pragmatic. ipv6 may suck caterpillar snot, but we have no alternative. so get over it."

(~2008)